RHIC PROJECT

Brookhaven National Laboratory

Gradient Errors & Correction System Summary

H. Hahn

Gradient Errors & Correction System Summary

H. Hahn

b_1 Errors

Effects:

— Tune shift horizontal & vertical

— Half integer stopbands $\sim \Sigma \beta b_1 \ell e^{i2\psi}$

— $\Delta \beta/\beta$ for on–momentum particles $\sim \Sigma \beta b_1 \ell e^{i2\psi}$

— Horizontal dispersion $\sim \Sigma \sqrt{\beta_H} X_p b_1 \ell e^{i\psi}$

Uncorrectable closed orbit error for off-momentum particles

Reduced acceptance

— Reduced luminosity if β^* , X_p^* increased

— Increased beam-beam effect (??)

Source of errors:

 b_1 in dipoles

 Δb_1 i.e. mostly length errors in quadrupoles (insertions dominant)

Feed down for sextupoles if closed orbit off

No installation errors!

Correction:

- Sorting of arc dipoles + QF/QD reduces $\Delta \beta/\beta$ & stopband (No b_1 random correctors in arc required.)
- Closed orbit error control (eliminates sextupole feed down)
- Trim power supply at each insertion Q eliminates insertion errors Correct $\beta^* \& X_p^*$ at X-ing point
- Correction of horizontal dispersion by using b_1 at QF in arc (2 families/arc) (same lead arrangement as for transition jump however power supply conflict? CDR wiring has to be changed.)

— Correct residual $\Delta \beta / \beta$ & stopband

Parzen ---- Insertion Quads

Ruggiero \longrightarrow Need b_1 at QF (different lead configuration from transition jump) Need b_1 at QD (Incompatible with a_1)

Compromise \longrightarrow Bypass on QF & QD in arcs

(This solution is in effect a stop band correction system in the arc. It is separate from the gamma transition system and leaves space for the a_1 correctors.)

a_1 — Errors

Effects:

— Stop bands

Difference resonance (coupling) $\nu_x = \nu_y$ Sum resonance 57, 58th harmonic

— Coupling $(\nu_x, \nu_y \rightarrow \nu_1, \nu_2 / \beta_x, \beta_y \rightarrow \beta_1, \beta_2)$

Driven by average (systematic) a_1

Betatron function distortion

resulting in loss of acceptance

Driven by sum resonances

— Tune splitting $(\nu_1 - \nu_2 > 10 \times 10^{-3})$

equivalent to lacking control over betatron tunes

- Vertical Dispersion
 - 1) at X-ing points: loss in luminosity
 - 2) at injection & beam dump

Sources:

— a_1 in dipoles

dominant contribution to systematic a_1

Rotation of quads: INSTALLATION ERROR

 $\beta^* = 6 \text{ m}$ Arc Quads \approx Insert Quads contribution

 $\beta^* = 2 \text{ m}$ Insertion quads dominate

— Vertical closed orbit errors in sextupoles (feed down)

Correction System

- Sorting of dipoles but improvement limited due to quadrupole installation error
- Vertical closed orbit error control (eliminate feed down)
- Coupling correction
 - 1) Skew correctors at Q2/Q3 and Q5
 - 2) Error correction at the source with a_1 at QD in arc Compensate systematic a_1 in each arc (this is dominant source of coupling)

- Betatron distortion correction Sum resonance stopband correction with a_1 at Q2/Q3 and Q5 individually adjusted
- Vertical dispersion correction
 - S.Y. Lee: a_1 at Q9 together with a_1 at Q2/Q3 and Q5 (This solution would provide space for b_1 stopband correctors at QD)

Parzen: a_1 at QD in arcs (Wiring configuration simulates Q9 and allows simultaneous coupling correction)